Instructions: Please complete the following questions by researching online and watching video links. Please reach out to your teacher for help or guidance through email or Teams if needed. Live video tutorials are on Teams Wednesdays at 11am and will be recorded and posted on Teams to watch at your convenience.

Trigonometry

Watch the following videos and fill in the notes / answer the questions.

1. Labelling sides

https://www.youtube.com/watch?v=1ALLrv2dQxc

	What type of triangle is this? How do you know? Right triangle - it has a 90° angle
θ	This is the Greek letter called: \qquad theta \qquad It is used as a variable to represent: an angle
${ }^{6}$ hypotenuse'	It is the \qquad longest \qquad side It is always opposite the \qquad right angle \qquad
‘opposite’	Opposite the angle we're \qquad looking for \qquad or Opposite the angle we \qquad already know__ \qquad
'adjacent'	The one "_left over__" The side next to the \qquad right angle and the angle involved in the question
	Which side name stayed the same in both triangles? the hypotenuse Why did the "opp" and "adj" sides swap? because the angle involved in the question changed
label the diagram with "hyp", "opp" and "adj"	

Label the following triangles with "hyp", "opp" and "adj" (in reference to the indicated angle)

2. Intro Trig ratios/identities/formulas
https://www.youtube.com/watch?v=tKAMM3kacbs

sine cosine tangent \tan \cos \sin $\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}$	Find these 3 buttons on your calculator.
\tan	
$\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}$	
$\tan \theta=\frac{\text { opposite }}{\text { adjacent }}$	These are the 3 Trig formulas. What is the phrase used to remember the formulas?

For the following questions, label each side (hyp, opp, adj) and decide which of the three trig formulas you would use, based on the "active" sides.

3. Finding missing sides

*** BEFORE YOU START THIS SECTION, AND USING THE SIN COS TAN BUTTONS ON YOUR CALCULATOR, YOU HAVE TO MAKE SURE YOUR CALCULATOR IS IN DEGREE MODE - look for a
little D or DEG on your screen, if it shows R or RAD or G or GRAD, hit your "mode" button until it's in degree mode, IF YOU AREN'T IN THE RIGHT MODE, YOUR ANSWERS WILL BE WRONG.
https://www.youtube.com/watch?v=E7y3ENOSGK4

	Label each side. Explain why the correct formula is $\tan \theta=\frac{\mathrm{opp}}{\mathrm{adj}}$ because the "active sides" are opp (t) and adj (3.1m) Show the steps of how to get the missing side length "t" $\begin{aligned} & \tan \theta=\frac{o p p}{a d j} \\ & \tan 38=\frac{t}{3.1} \\ & 0.7813=\frac{t}{3.1} \\ & \mathbf{t}=\mathbf{2 . 4} \mathbf{~ m} \end{aligned}$
	Label each side Explain why the correct formula is $\sin \theta=\frac{\text { opp }}{\text { hyp }}$ because the "active sides" are opp (17.3 cm) and hyp (y) Show the steps of how to get the missing side length " y " $\begin{gathered} \sin \theta=\frac{o p p}{h y p} \\ \sin 64=\frac{17.3}{y} \\ 0.8988=\frac{17.3}{y} \text { or } \mathrm{y}=\frac{17.3}{\sin 64} \\ \mathrm{y}=19.2 \mathrm{~cm} \end{gathered}$ ***note, if you want to do the math a different way (that is still mathematically correct), you can do it your own way. The math shown in the video is a short-cut, short cuts are good, but sometimes confusing. Just make sure you can do it in a way that arrives at the correct answer ()ㅇ

Find the missing side lengths in the following triangles. For every question, label your sides and write your formula. Round answers to one decimal place.

	$\begin{aligned} & \cos \theta=\frac{a d j}{h y p} \\ & \cos 55=\frac{x}{17} \\ & 0.5735=\frac{x}{17} \\ & \text { (if you are going } \\ & \text { to round off like } \\ & \text { I did, make sure } \\ & \text { you use at least } \\ & 4 \text { decimals) } \\ & x=9.8 \end{aligned}$		$\begin{gathered} \tan \theta=\frac{o p p}{a d j} \\ \tan 21=\frac{x}{11} \\ 0.3839=\frac{x}{11} \\ x=4.2 \end{gathered}$
	$\begin{aligned} & \cos \theta=\frac{a d j}{h y p} \\ & \cos 31=\frac{x}{18} \\ & 0.8572=\frac{x}{18} \\ & x=15.4 \end{aligned}$		$\begin{aligned} & \cos \theta=\frac{a d j}{h y p} \\ & \cos 54=\frac{17}{x} \\ & x=\frac{17}{\cos 54} \\ & x=\frac{17}{0.5879} \\ & x=28.9 \end{aligned}$

I'm going to post the answers (without the work) below so you know if you did the questions correctly or not.
1)

9.8
3)

5) $\overbrace{4.2}^{11} \int_{210}^{x}$

2)

15.4
4)

6)

8)

16.3

