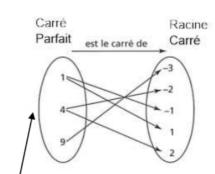
RÉPONSES

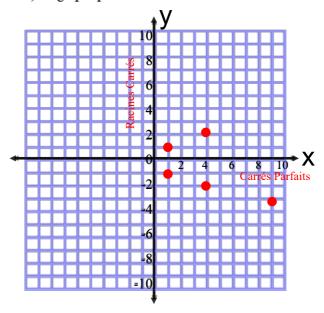

Relations & Fonctions jusqu'à maintenant...

- 1. Pour les graphiques/diagrammes suivants, indique:
 - a) la variable indépendante
 - b) la variable dépendante
 - c) le domaine
 - d) l'image

- b) VD: Taille
- c) $\{x \mid 0,2,3,10,14,18\}$
- d) {y 50,100,125,138,150,188}

- b) VD: Racines Carrés
- c) $\{x \mid 1,4,9\}$
- **d)** {y -3,-2,-1,1,2}

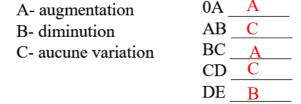
- a) VI: Temps
- b) VD: Profondeur
- c) $\{x \mid 0 \le x \le 30, x \in \mathbb{R}\}\$
- **d)** $\{y \mid 0 \le y \le 20, y \in \mathbb{R}\}$


- 2. Représente la relation dans le diagramme sagittal par:
- a) un ensemble de paires ordonnées?

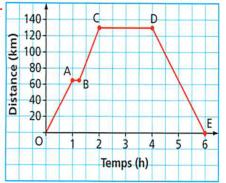
$$\{(1,-1),(1,1),(4,-2),(4,2),(9,-3)\}$$

b) une table de valeurs

Carrés Parfaits	Racines Carrés
1	-1
1	1
4	-2
4	2
9	-3


c) un graphique

REPONSES


- 3. Utilise le graphique pour répondre aux questions suivantes:
 - a) Décris ce qui se passe pendant le segment AB et CD. Elle est arrêter
 - b) Combien d'heures est-ce que l'excursion a-t-elle duré? 6 heures
 - c) Quelle est la distance entre Sussex et Fredericton? 130 km
 - d) Après combien d'heures est-ce que Mme Parlee est arrivée à Fredericton? 2 heures

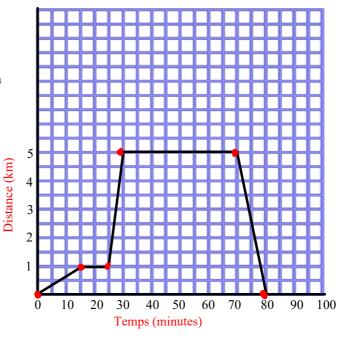
- f) Combien de temps est-ce qu'elle est à Fredericton? 2 heures
- g) À quel(s) moment(s) est-ce qu'elle est chez-elle? points 0 et E
- h) Associe les termes suivants aux segments qui correspondent.

i) Écris le domaine et image pour les données dans le graphique.

Une excursion de Mme Parlee d'un jour de Sussex à Fredericton

$$\{x \mid 0 \le x \le 6, x \in \mathbb{R}\}\$$

 $\{y \mid 0 \le y \le 130, y \in \mathbb{R}\}\$


6.

a) Esquisser un graphique qui représente la situation suivante:

Ava et Lauren vont à l'école. L'école est 5km de chez-elles. Elles marchent 1km dans 15 minutes à l'arrêt de bus. Elles arrêtent pour attendre l'autobus. L'autobus les ramasse 10 minutes plus tard. L'autobus arrive à l'école en 5 minutes. Ava et Lauren restent à l'école pour seulement 40 minutes. Elles sont malades alors elles se retournent chez-elles en auto, qui prends 10 minutes.

b) Écris le domaine et image pour les données dans le graphique.

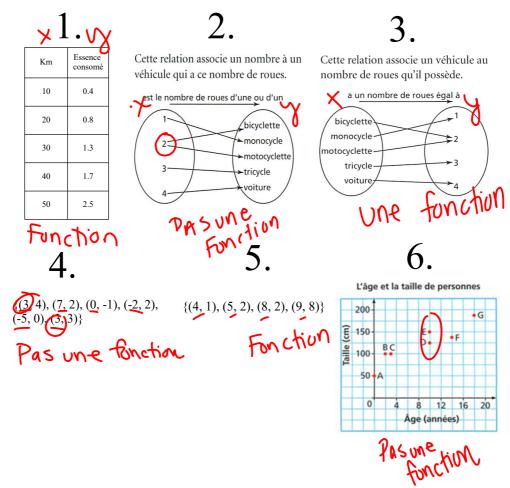
$$\{x \mid 0 \le x \le 80, x \in \mathbb{R}\}\$$

 $\{y \mid 0 \le y \le 5, y \in \mathbb{R}\}\$

Les Fonctions

Relation: un ensemble d'égalité (une série de coordonées); décrit un lien entre divers objets

Une fonction:


Une relation, mais pour chaque valeur de x, il n'y a qu'une seule valeur de y qui lui correspond.

- -Les valeur de x ne sont JAMAIS répétées.
- -Les valeur de y peuvent être répétées.

Est-ce que cette relation est une fonction? Pourquoi? a 5 00 P.1.

(2-6), (14), (24), (0,0), (1-6), (3,0)}

Dit si les relations suivantes sont des fonctions. <u>Demande la question « est-ce que x répète? »</u>

Pour que les relations suivantes soient des fonctions, x ne peut pas avoir quelles valeurs?

1. {(12,14), (13,5), (-2,7), (X,13)} {(12,13), (-11,22), (33,101), (X,22)} {(13,14), (12,5), (16,7), (X,13)} $\times \neq 12, 13, -2$ $\times \neq 12, -11, 33$ $\times \neq 13, 12, 16$

^{**}Tout les fonctions sont des relations, mais pas tous les relations sont des fonctions

Les Fonctions

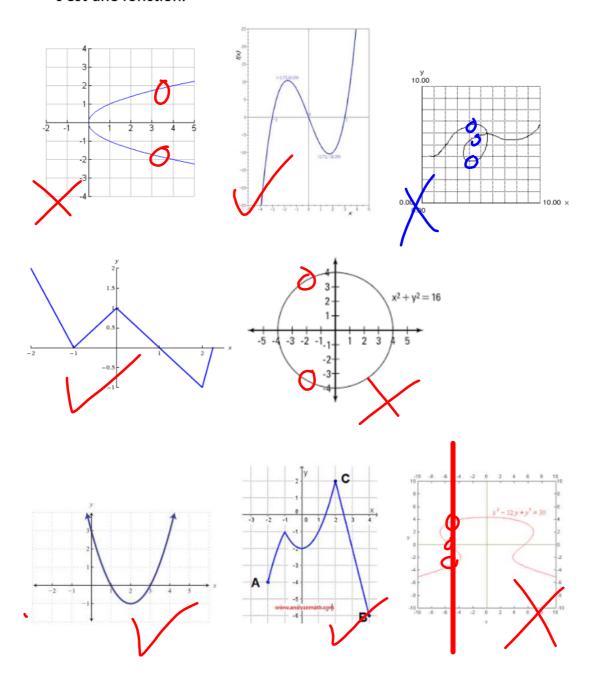
Relation: un ensemble d'égalité (une série de coordonnées); décrit un lien entre divers objets

Fonction: Une relation, mais pour chaque valeur de x, il n'y a qu'une seule valeur de y qui lui correspond.

- -Les valeur de x ne sont JAMAIS répétées.
- -Les valeur de <u>y peuvent être répétées</u>.

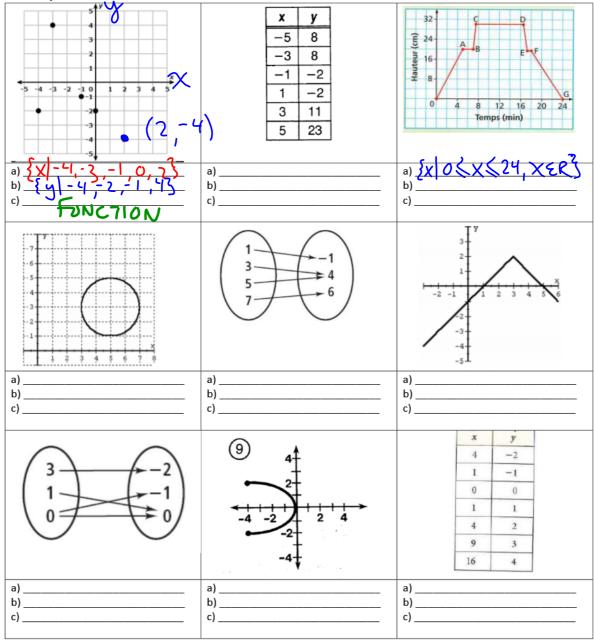
Est-ce que cette relation est une fonction? Pourquoi?

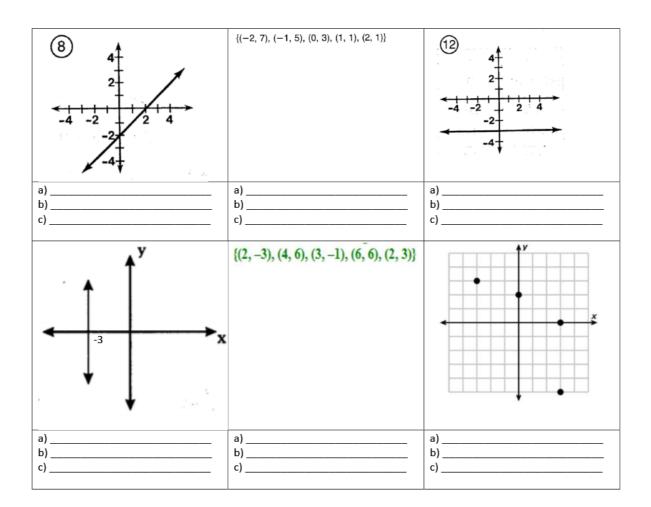
Dit si les relations suivantes sont des fonctions. <u>Demande la question « est-ce que x répète? »</u>


Km	Essence consomé		Cette relation associe un nombre à un véhicule qui a ce nombre de roues.	0.000		tion as				e au
10	0.4		est le nombre de roues d'une ou d'un	/	a un	nombre	de rou	es ég	al à	\
20	0.8		bicyclette monocycle motocyclette		onocyclet ocyclet	te-	_		-3	
30	1.3		3 tricycle voiture		voitu	/		/	4	
40	1.7									
50	2.5									
		1), (-2, 2),	{(4, 1), (5, 2), (8, 2), (9, 8)}		L'âge	e et la t	aille d	e per	sonn	es
[(3, 4), ((7, 2), (0, -	1), (-2, 2),	{(4, 1), (5, 2), (8, 2), (9, 8)}		L'âge	et la t	aille d	e per		
[(3, 4), ((7, 2), (0, -	1), (-2, 2),	{(4, 1), (5, 2), (8, 2), (9, 8)}	0	200	et la t				• G
[(3, 4), ((7, 2), (0, -	1), (-2, 2),	{(4, 1), (5, 2), (8, 2), (9, 8)}	(cm)	200		aille d	7		
{(3, 4), ((7, 2), (0, -	1), (-2, 2),	{(4, 1), (5, 2), (8, 2), (9, 8)}	aille (cm)	200	e et la t	E	7		
	(7, 2), (0, -	1), (-2, 2),	{(4, 1), (5, 2), (8, 2), (9, 8)}	Taille (cm)	200	ВС	E	7		
{(3, 4), ((7, 2), (0, -	1), (-2, 2),	{(4, 1), (5, 2), (8, 2), (9, 8)}	Taille (cm)	200- 150- 100- 50-	ВС	E		F	• G
{(3, 4), ((7, 2), (0, -	1), (-2, 2),	{(4, 1), (5, 2), (8, 2), (9, 8)}	Taille (cm)	200- 150- 100-	BC A	E	12	F 16	• G

Pour que les relations suivantes soient des fonctions, x ne peut pas avoir quelles valeurs?

^{**}Tout les fonctions sont des relations, mais pas tous les relations sont des fonctions


Les Graphiques d'une fonction


Test de la ligne Verticale: Si on passe un droite verticale de gauche à droite dans le graphique et qu'elle coupe une seule fois la courbe de la relation, c'est une fonction.

Pour les relations suivantes identifie :

- a) le domaine
- b) l'image
- c) si c'est une fonction

